国产综合亚洲区

  • <object id="xhetu"><option id="xhetu"><mark id="xhetu"></mark></option></object>
    <th id="xhetu"></th>
    <code id="xhetu"></code>

    1. <big id="xhetu"><em id="xhetu"></em></big>
      
      
      1. <object id="xhetu"><menu id="xhetu"><samp id="xhetu"></samp></menu></object>
      2. <code id="xhetu"></code>
        ?

        低Cr_Mo_Re抗磨鑄鐵拋丸機葉片的生產研究


        112其它 1999 10日進行了國內檢索資料 查詢 ,根據上述檢索詞及分類 ,在中文 20 數據庫及相關刊物上,查到文獻 87 ,其中與本課題密切相關的文獻 25 西安交大對15Cr 碳化物任意排列的馬 氏體白口鑄鐵和碳化物定向排列且較細的 25Cr 奧氏體白口鑄鐵的兩個拋丸機葉片 等對抗磨白口鑄鐵生產工藝做了大量工作 ,認為 提高鑄鐵韌性的主要因素是采用綜合變質處理 ,即凈化鐵水改善晶界冶金質量 加強冷卻,減少夾雜物 ,加強鑄件充分 補縮是提高鑄鐵韌性的關鍵 。這些對拋丸機 葉片壽命的提高是有利的 鄭州工學院對大負荷拋丸機(Q7710) 認為它是以受沖擊的高應力磨料磨損為主 ,為提高葉片的壽命 宜選用奧氏體基體的高鉻鑄鐵,力求獲得彌 散細小針狀的 C3硬化相 ,深扎在奧氏 體基體中 北京科技大學采用軋制白口鑄鐵拋丸機葉片 ,通過高溫軋制變形 ,使白口鑄鐵的網狀 化物破碎 武漢機械工藝研究所采用14 %~16 70Cr 、118 %~212 的抗磨鑄鐵,耐磨性是高 錳鋼的 HRC62~66 ,金相組織為回火馬氏體 龍江省機械工業研究所采用鉻硼白口抗磨鑄鐵拋丸機葉片 HRC65~68 東北大學采用稀土低鉻多元合金耐磨鑄 鐵拋丸機葉片 HRC55 洛陽工學院采用接近共晶成分的20 17%Cr 兩種拋丸機葉片 ,采用定向凝固 鑄造工藝和改進的熱處理工藝 ,前者使用壽 670h,后者為 380h 有人研究了外葉片的傾斜方向與傾角對 拋丸器運動力學參數和葉片所受壓力的影 種低鉻鑄鐵拋丸機葉片的失效分析和對比 有人研究拋丸機葉片的磨損及曲面葉片的優點 大連鐵道學院研究了《拋丸機高鉻白口鑄鐵葉片的 SiCa復合變質處理》; 湖北工學院《高 鉻鑄鐵拋丸機葉片研制》采用半金屬型的 17 %Cr 、313 的高鉻鐵葉片,使用壽命 400 小時 改變碳化物的分布、形態和基體組織 ,獲得抗 磨性較好的貝氏體抗磨鑄鐵 ,硬度為 HRC48 ~55 ,壽命是中鉻白口鑄鐵拋丸機葉片的 天津大學《拋丸機葉片磨損失效分析和金相組織的影響》; 上海工業大學《高鉻鑄 鐵拋丸機葉片的研究》,研究了以銅 、錳復合 代鉬制造高鉻鑄鐵拋丸機葉片 ,葉片工作面 采用激冷工藝 ,使工作面晶粒細 、硬度高


        2 葉片失效機理


        拋丸對葉片的磨損,按磨損機理為一次 加載下的沖擊斷裂機制高應力磨料磨損 2200R/min 的高速 ,將拋丸拋向葉片 丸的拋射能力為70~80m/ 120kg/min 能力沖擊葉片,使葉片斷裂
        磨損分三個階段:第一階段為予磨階段 初裝入拋丸,剛轉運時 ,由于葉片表面較硬 磨損量極微。但馬上到第二階段 ,這一階段 為過渡階段 ,由于受拋丸的沖擊和高應力磨 ,這一階段失重較大,幾乎與磨程呈線性關 ,此時葉片出口端有凹坑。第三階段為磨 斷階段 ,這一階段失重趨于穩定 ,再磨損因受 較大沖擊力,沿凹坑處斷裂 在葉片的入口端,由于葉輪輸入的大量 120kg/min 數量 鐵丸一面彈跳,一面沿著葉片表面向外滑動 由于慣性轉動力,使鐵丸緊壓在葉片上 ,造成 鐵丸對葉片的磨削 ,愈靠近出口端 ,慣性轉動 力愈大 ,鐵丸對葉片的磨削作用也愈強 ,在出 ,葉片還與一定數量的亂散射的反彈鐵丸相撞 ,此時葉片與鐵丸的相對速度要比入 口端大得多 ,較后在出口端磨出深溝 ,沿深溝 斷裂 ,而組織是由基體和碳化物組成?;w的 作用是支撐碳化物去抵抗拋丸的沖擊和高應 力磨損 ,減少碳化物的剝落和碎裂 ,發揮碳化 物的抗磨損作用 碳化物的作用是抵抗拋丸的沖擊和高應力磨損 ,而凸出于基體之上 葉片磨損失效的主要原因是,葉片在拋 丸的沖擊下 1000)產生裂 再在碳化物與基體的界面上產生裂紋 失去支撐,從而易被陸續而來的拋丸沖裂及 剝落

        3化學成分的選擇
        化學成分的選擇,必須保證基體有較 高的硬度和足夠的韌性 。選取馬氏體其硬度 比奧氏體大 馬氏體的硬度為HV 800。選取的碳化物必須是 其硬度為HV1700-1800


        化學成分的選擇 ,應結合實際情況 用剩余的軸承鋼,較大限度的降低成本 :低鉻鑄鐵的含碳量愈多,碳化物含量 愈多 ,硬度愈高 ,抗磨性愈好 ,但鑄鐵的韌性 下降 210%增加到 315 ,碳化物含量可從 25 %增加到 40 含碳量過低,鑄造性能不好 Si:硅一般是從原料中代入的 ,要將含硅 量控制在較低的范圍也是很困難的 。硅可以 作脫氧劑用 低于015 低于018 ,鑄造性能不好。提高硅 可以提高馬氏體轉變溫度 ,有利于獲得馬氏體 分布在碳化物中,可提高硬度 ,可細化碳化物,改善韌性 Mo:鑄鐵中的鉬 ,一部分進入碳化物 部分溶于奧氏體中,溶入奧氏體中的鉬 高淬透性。鉬昂貴 ,可用 Mn 代替部分鉬 0115%以下 。隨著 Re 的增加 ,葉片的硬度和 AK 值增加 ,有利于抗磨 通過金相組織可看出 Re能細化晶粒 改善晶界質量,減少晶間夾雜物 ,改變碳化物 的形貌 ,由原來的連續網狀轉變為斷續網狀 或孤立狀,這就會大大減少碳化物對馬氏體 基體的剝裂作用 ,提高韌性 ,增加抗磨性
        表4、鑄鐵的成分
        4熔煉
        115t工頻爐熔煉 ,和熔煉合金鋼一樣 進行操作 熔化期:加起重塊 、爐料 Cr、Mo 合金 熔化造渣,取樣分析 還原期:脫氧 ,Mn 、Si 1550出爐 ,配料方案見表5 、12種配料方案,機械性能基本相同
        5熱處理
        葉片獲得較佳硬度的熱處理等溫淬火加回火 Re鑄鐵獲得馬氏 ,同時要避免開裂,在低溫區冷卻速度要小于油
        表5 配料方案
        葉片不宜在含有大量奧氏體的鑄態下使 ,而應采用適當的熱處理方法,使基體以馬 氏體為主 ,殘余奧氏體應小于25%

        6、機械性能

        沖擊試樣用砂型鑄造 ,不開槽口 ,試樣尺 10mm10mm 55mm 跨度為40mm HRU—150AT 型光學洛氏硬度計測定 HRC Re鑄鐵的機械性能 鑄造車間以鑄態試樣 HRC 驗收 ,熱處理車間以熱 處理試樣 HRC 驗收 機械性能,如表6

        表6 ,機械性能
        表7、加過濾網后的性能
        加過濾網后 HRC 均勻 加過濾網后 AK 有較大提高 AK提高的明顯 提高20 度提高的不明顯為5~10 Mo后硬度提高的明顯

        7、金相組織

        金相組織用Neophot 型光學顯微鏡進行測定 Cr、Re 相同的條件下 含量增加,如圖1-4
        圖1-4

        国产综合亚洲区

      3. <object id="xhetu"><option id="xhetu"><mark id="xhetu"></mark></option></object>
        <th id="xhetu"></th>
        <code id="xhetu"></code>

        1. <big id="xhetu"><em id="xhetu"></em></big>
          
          
          1. <object id="xhetu"><menu id="xhetu"><samp id="xhetu"></samp></menu></object>
          2. <code id="xhetu"></code>